Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The seven-membered nickelacycle $\left[\mathrm{NiBr}\left\{o-\mathrm{CH}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{PPh}_{2^{-}}\right.\right.$ $\left.\left.\kappa^{2} C, P\right\}\left[\mathrm{PPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right]$

Alison J. Edwards* and Eric Wenger

Research School of Chemistry, Australian National University, ACT 0200, Australia Correspondence e-mail: alison.edwards@anu.edu.au

Received 14 January 2002
Accepted 11 February 2002
Online 12 March 2002
The crystal and molecular structures of the title compound, 3-bromo-3-(dibenzylphenylphosphonio)-2,2-diphenyl-5-tri-fluoromethyl- 1 H -benzo $[e][1,2]$ phosphanickelepine, $\quad[\mathrm{NiBr}-$ $\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{P}\right)\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{P}\right)$], which was obtained as the major regioisomer from insertion of HCCCF_{3} into the $\mathrm{Ni}-\mathrm{C}$ bond of the five-membered phosphanickelacycle $\left[\mathrm{NiBr}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2}-\kappa^{2} C, P\right)\left\{\mathrm{PPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right]$, have been determined. Principal geometric data include the $\mathrm{Ni}-X$ bond lengths $\mathrm{Ni}-\mathrm{Br}$ 2.3343 (4) $\AA, \mathrm{Ni}-\mathrm{P} 2.1867$ (7) and 2.2094 (7) \AA, and $\mathrm{Ni}-\mathrm{C}$ 1.882 (3) \AA, and the two trans angles $\mathrm{P}-\mathrm{Ni}-\mathrm{P} 171.55(3)^{\circ}$ and $\mathrm{Br}-\mathrm{Ni}-\mathrm{C} 176.88(9)^{\circ}$.

Comment

The insertion reactions of unsymmetrical alkynes with metallacycles have widespread applications in organic synthesis, but the origins of the observed regioselectivities are still unclear (Heck et al., 1990; Abad, 1997; Spencer \& Pfeffer, 1998; Cacchi, 1999; Cámpora et al., 1999; Larock, 1999a,b; Bennett et al., 2001). We have recently reported a systematic study of alkyne insertions into the $\mathrm{Ni}-\mathrm{C}$ bond of the phosphanickelacycle $\quad\left[\mathrm{NiBr}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{PPh}_{2}-\kappa^{2} C, P\right)\left(\mathrm{P} R_{3}\right)\right]$ $\left[\mathrm{P} R_{3}=\mathrm{PEt}_{3}\right.$ for $(\mathrm{I} a)$ and $\mathrm{PPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$ for ($\left.\left.\mathrm{I} b\right)\right]$, in which electronic factors seem to play an important role in determining the geometry of the resulting seven-membered nickelacycles (Edwards et al., 2001). This fact has since been supported by density functional theory (DFT) investigations of the insertion step for several alkynes with model

phosphanickelacycles (Macgregor \& Wenger, 2002; Bennett et al., 2001). This theoretical work includes the alkyne HCCCF_{3},

Figure 1
The molecular structure of (III) with selected atom labelling. Displacement ellipsoids are drawn at the 50% probability level. With the exception of that on $\mathrm{C} 8, \mathrm{H}$ atoms have been omitted for clarity.
for which experimental data have only recently become available. The title compound, (III), was isolated as the major product from insertion of HCCCF_{3} into the $\mathrm{Ni}-\mathrm{C}$ bond of ($\mathrm{I} b$) (see Scheme), and a study of its structure was undertaken in order to establish its three-dimensional structure and mainly to confirm the location of the CF_{3} group on the β-vinylic C atom. The molecular geometry of (III) is shown in Fig. 1 and the principal geometric parameters are given in Table 1. The Ni atom in the complex is in a distorted squareplanar environment, with the two phosphine ligands trans with respect to one another. The seven-membered ring is in a boatshaped configuration that renders the two phenyl rings of the cyclometallated PPh_{2} group and the two benzyl groups of the auxiliary phosphine separately inequivalent.

Similar geometries have been observed for other related seven-membered phosphanickelacycles (Müller et al., 1993; Edwards et al., 2001), the carbocyclic species $\left[\mathrm{Ni}\left\{\mathrm{C}\left(\mathrm{CO}_{2}\right.\right.\right.$ $\left.\mathrm{Me})=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CF}_{2} \mathrm{CF}_{2}-\kappa^{2} C, C\right\}$ (dcpe)] [dcpe is bis(dicyclohexylphosphinoethane)], which was produced by insertion of DMAD (dimethyl acetylenedicarboxylate) into the Ni -naphthyl bond of $\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CF}_{2} \mathrm{CF}_{2}-\kappa^{2} C, C\right)(\right.$ dcpe $\left.)\right]$ (Bennett et al., 1995), and the carboxylate complex resulting from insertion of CO_{2} into the Ni -phenyl bond of the nickelacycle $\left[\mathrm{Ni}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CMe}_{2} \mathrm{CH}_{2}-\kappa^{2} C, C\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (Carmona et al., 1986, 1989). The bond lengths are unexceptional. The distances of the nickel-vinyl unit [$\mathrm{Ni}-\mathrm{C} 81.882$ (3) \AA and C7-C8 $1.342(4) \AA$] are similar to those reported for analogous compounds (Edwards et al., 2001).

Experimental

The diffusion of HCCCF_{3} into a solution of ($\mathrm{I} b$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a very unstable mixture of the two isomeric insertion products $[\mathrm{NiBr}\{o-$ $\left.\left.\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{PPh}_{2}-\kappa C, P\right\}\left\{\mathrm{PPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right]$, (II), and $[\mathrm{NiBr}\{o-$ $\left.\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{PPh}_{2}-\kappa C, P\right\}\left\{\mathrm{PPh}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right], \quad$ (III) (spectroscopic ratio 1:2.5; yield $>90 \%$). Attempted crystallization by diffusing pentane into a toluene solution of the mixture led to complete decomposition of (II), most likely due to β-hydride elimination, but orange single crystals of (III) could be isolated. ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 3.06-3.30\left(m, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.54(d d, 1 \mathrm{H}, J=12.3,8.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 3.70\left(d d, 1 \mathrm{H}, J=14.4,7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.70($ br $d, 1 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 6.99(d, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.10-7.68(m, 25 \mathrm{H}), 8.11(d d d, 2 \mathrm{H}, J=$ $9.6,7.8,1.5 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($188.2 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-63.7$ (app. $t,{ }^{4} \mathrm{~J}_{\mathrm{PF}}=$ $\left.5.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(81.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 10.1\left(d q,{ }^{2} J_{\mathrm{PP}}=\right.$ $\left.305.2,{ }^{4} J_{\mathrm{PF}}=5.3 \mathrm{~Hz}, \mathrm{PPhBz}_{2}\right), 36.5\left(d q,{ }^{2} J_{\mathrm{PP}}=305.2,{ }^{4} J_{\mathrm{PF}}=5.7 \mathrm{~Hz}\right.$, PPh_{2}).

Crystal data

$\left[\mathrm{NiBr}\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{P}\right)\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{P}\right)\right]$
$M_{r}=798.28$
Monoclinic, $P 2_{1} / c$
$a=18.3307$ (2) A
$b=10.9887$ (1) \AA
$c=18.7279$ (2) \AA
$\beta=106.1717$ (7) ${ }^{\circ}$
$V=3623.10(6) \AA^{3}$
$Z=4$

Data collection

KappaCCD diffractometer
φ and ω scans
Absorption correction: Gaussian integration (Coppens, 1970)
$T_{\text {min }}=0.668, T_{\text {max }}=0.831$
71633 measured reflections
8294 independent reflections

Refinement

Refinement on F
$R=0.031$
$w R=0.036$
$S=1.05$
5217 reflections
447 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 58628
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, orange
$0.24 \times 0.21 \times 0.12 \mathrm{~mm}$

5217 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 23$
$k=-13 \rightarrow 14$
$l=-24 \rightarrow 24$

Weighting scheme: Chebychev polynomial with 3 parameters (Carruthers \& Watkin, 1979): $0.650,0.286$ and 0.339
$(\Delta / \sigma)_{\text {max }}=0.001$.
$\Delta \rho_{\text {max }}=0.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)

Extinction coefficient: 191 (18)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-Br1	$2.3343(4)$	$\mathrm{P} 2-\mathrm{C} 36$	$1.852(3)$
$\mathrm{Ni} 1-\mathrm{P} 1$	$2.1867(7)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.39(4)$
$\mathrm{Ni} 1-\mathrm{P} 2$	$2.2094(7)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.403(4)$
$\mathrm{Ni} 1-\mathrm{C} 8$	$1.882(3)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.491(4)$
$\mathrm{P} 1-\mathrm{C} 9$	$1.844(3)$	$\mathrm{C} 6-\mathrm{C} 9$	$1.511(4)$
$\mathrm{P} 1-\mathrm{C} 11$	$1.829(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.342(4)$
$\mathrm{P} 1-\mathrm{C} 17$	$1.813(3)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.487(4)$
$\mathrm{P} 2-\mathrm{C} 23$	$1.838(3)$	$\mathrm{C} 8-\mathrm{H} 81$	$0.90(3)$
$\mathrm{P} 2-\mathrm{C} 29$	$1.821(3)$		
$\mathrm{Br} 1-\mathrm{Ni} 1-\mathrm{P} 1$	$93.69(2)$	$\mathrm{P} 2-\mathrm{Ni} 1-\mathrm{C} 8$	$85.00(8)$
$\mathrm{Br} 1-\mathrm{Ni} 1-\mathrm{P} 2$	$94.70(2)$	$\mathrm{Ni} 1-\mathrm{P} 1-\mathrm{C} 9$	$114.61(9)$
$\mathrm{P} 1-\mathrm{Ni} 1-\mathrm{P} 2$	$171.55(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$118.3(2)$
$\mathrm{Br} 1-\mathrm{Ni} 1-\mathrm{C} 8$	$176.88(9)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$123.3(3)$
$\mathrm{P} 1-\mathrm{Ni} 1-\mathrm{C} 8$	$86.57(8)$	$\mathrm{Ni} 1-\mathrm{C} 8-\mathrm{C} 7$	$128.2(2)$

H atoms were placed in geometrically determined positions and their coordinates were allowed to ride on those of the attached C atoms $(\mathrm{C}-\mathrm{H}=1.00 \AA)$, with the exception of the vinylic H atom, for
which positional and isotropic displacement parameters were included in the refinement.

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and maXus (Mackay et al., 1999).

EW is grateful to the Australian Research Council for the award of a QEII Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1096). Services for accessing these data are described at the back of the journal.

References

Abad, J.-A. (1997). Gazz. Chim. Ital. 127, 119-130.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bennett, M. A., Hockless, D. C. R. \& Wenger, E. (1995). Organometallics, 14, 2091-2101.
Bennett, M. A., Macgregor, S. A. \& Wenger, E. (2001). Helv. Chim. Acta, 84, 3084-3104.
Cacchi, S. (1999). J. Organomet. Chem. 576, 42-64.
Cámpora, J., Palma, P. \& Carmona, E. (1999). Coord. Chem. Rev. 193-195, 207-281.
Carmona, E., Gutiérrez-Puebla, E., Marín, J. M., Monge, A., Paneque, M., Poveda, M. L. \& Ruiz, C. (1989). J. Am. Chem. Soc. 111, 2883-2891.
Carmona, E., Palma, P., Paneque, M., Poveda, M. L., Gutiérrez-Puebla, E. \& Monge, A. (1986). J. Am. Chem. Soc. 108, 6424-6425.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.

Edwards, A. J., Macgregor, S. A., Rae, A. D., Wenger, E. \& Willis, A. C. (2001). Organometallics, 20, 2864-2877.
Heck, R. F., Wu, G., Tao, W. \& Rheingold, A. L. (1990). In Catalysis of Organic Reactions, edited by D. W. Blackburn, pp. 169-188. New York: Dekker.
Larock, R. C. (1999a). J. Organomet. Chem. 576, 111-124.
Larock, R. C. (1999b). Pure Appl. Chem. 71, 1435-1442.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Macgregor, S. A. \& Wenger, E. (2002). Organometallics. In the press.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). maXus. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Müller, G., Panyella, D., Rocamora, M., Sales, J., Font-Bardía, M. \& Solans, X. (1993). J. Chem. Soc. Dalton Trans. pp. 2959-2967.

Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Spencer, J. \& Pfeffer, M. (1998). Advances in Metal-Organic Chemistry, Vol. 6, edited by L. S. Liebeskind, pp. 103-144. Stamford, Connecticut: JAI Press.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

